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For various computer simulation applications, one needs the integrals of the
Compton scattering kernel over its parameters. An efficient and accurate method for
evaluating these integrals is described and the corresponding software is available

upon request.

1. Introduction

In an earlier paper,! we presented a simple and fast method for computing the relativistic Comp-
ton scattering kernel for radiative transfer. For various code applications, we require integrals of the
Compton scattering kemnel over various combinations of its parameters. We describe an efficient method
for calculating the single integrals over & = $3-§3’ and ¥’ = hv//(myc?), the double integral over & and ¥’
and the triple integral over & ,y = hv/(moc?) and ¥, where v, & (v, &) is the incoming (outgoing) pho-
ton energy (in units of electron rest energy moc?) and direction, respectively. The integrals are over an
arbitrary, user-specified interval in each of the integration variables.

The essence of the method is to make use of the following inequality derived in Ref. 1:
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Here, K, is the modified Bessel function of the second kind, k is Boltzmann’s constant, T, is the elec-
tron temperature, ry is the classical electron radius and N, is the electron density. This simple algebraic
expression, which agrees with the Compton scattering kernel to within a factor of order 1, may be used
to determine those regions where significant contributions to the integral occur and one need only
integrate over these regions. This procedure increases the speed and assures the accuracy of the algo-
rithm.
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2. General Considerations

As was pointed out in Ref. 1, the essential features of G, are contained in [ZyTYy7q] , particularly
in the exp(—A/1) factor. Everything else is smoothly varying compared to this exponential except at the
point Y' = v, & = 1, where ¢ — 0. Therefore, for any given integration region, the integrand peaks near
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the minimum of A, within the region. Our approach is to find this minimum and then to integrate over
only a few e-foldings of exp(-A,/1) in its vicinity. The following properties of A, are useful in finding
this minimum.

First, we hold y and vy’ fixed and seek a minimum in §. We write A, in the form

1
A = -%{Y'—’¥+[4+(Y-Y')z+2rv-7'l(z+% N1, @
where

z= (1€Y'l
Clearly, we are at a minimum in & only if z=1 or

= 1-h=Y' V(Y. 3)
For z=1 and ¥" < v, we have A, = 1, while for ¥’ 2 7y, we have A, = 1+y"—Y.

Next, we hold y and € fixed and seek a minimum in y’. Setting the first derivative of A, with
respect to ¥’ equal to zero and squaring to get rid of the square root, we find

Y- (1-9)] [y -+-1'(1-8)) [y Y+’ (1-8)] = 0. @)

The third factor can never be 0 with £2<1. The second factor is a root of the squared equation but not
of the first derivative. The first factor,

Y =y[1+¢(1-8)), (5)
is the only possible minimum and at that minimum, A, = 1.

Finally, we hold y" and & fixed and seek a minimum in y. Setting the first derivative of A, with
respect to y equal to zero, we find, as above, that

¥=YNM1-y'(1-8), ©)
is the only possible minimum and A, = 1 at that minimum. If 1-y’(1-£) < 0, then, for all Y2 0, A, is
monotonically decreasing as y increases.
In the vicinity of the point ¥’ =7, £ = 1, the Compton scattering kernel is singular and behaves
like
—
e VPUD

oy Y27 (1%

If we integrate over Yy’ for fixed &, there is no problem in the vicinity of ¥’ = y even for & very near 1.
Since the region of physical interest is <1, the e-folding width of the exponential is narrower than the
width of the peak due to 1/q, so when we integrate over only a few e-foldings of the exponential we
automatically resolve the 1/q peak. Numerical integration will be correct if we use &=1-€, where € is
very small but larger than the machine round-off error. This procedure prevents divide-by-zero hardware
€rTors.

If we integrate over & for fixed ¥, then for ¥ = y we have an integrable 1/V1-§ singularity. We
use as our integration variable i = V1=, so that

Jodt = —2jonan, ®)

and we use a second-order Simpson’s rule assuming o©,n is quadratic in 7 between integration points.
This change of variables eliminates the singularity.

)

3. Integral over £ only

We seek the integral of o, over the interval £ < & <E. For fixed ¥ and ', we have shown that
the only minimum of A, is at
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& = 1-N-YV(YY).
Thus, the minimum of A, within the interval occurs at

Ep = max(§,min&.E,)]. ©)

To calculate the integral, we determine A,,,; = A,(,¥’,.Ey) and then determine the e-folding intervals by
solving

A'-Mnl +nt = L(‘Y;Y"g)p

for &, where n=1,2,3.... Within each e-folding interval we use a second-order Simpson’s rule and keep
doubling the number of integration points till the desired accuracy is reached. The number of e-folding
intervals is determined by either reaching the boundary or else when the contribution of the last e-
folding interval is less than the acceptable error. The integrand values are determined by calling the
Compton scattering kernel subroutine described in Ref. 1.

As was shown in Sec. 2, numerical integration in the vicinity of ¥=y’, E=1 will be correct if we
use 1| = V1-E as our integration variable, which eliminates the 1/g singularity.

4. Integral over Y’ only

The integration interval is Y’ <y’ <¥’. For fixed y and &, we have shown that the only minimum
of A, is at

Y'm = Y[1+Y(1-E)].
Thus, the minimum of A, within the interval occurs at
Y'n = max[Y,min(y’,y’ ). (10)

To calculate the integral, we determine A,,,; = A,(Y,Y'm.E) and then find the e-folding intervals by solv-
ing

1"l-ml +nt = ;‘F(Yr‘y'vé)

for ¥’, where n=1,2,3.... Within each e-folding interval, we use a second-order Simpson’s rule and keep
doubling the number of integration points till the desired accuracy is reached. The number of e-folding
intervals is determined by either reaching the boundary or else when the last e-folding interval’s contri-
bution is less than the desired accuracy. The integrand values are determined by calling the Compton
scattering kernel subroutine described in Ref. 1.

We use Y’ as our integration variable. As was shown in Sec. 2, numerical integration in the
vicinity of ¥=y", &=1 will be correct if we just use E=1—¢, where ¢ is very small but larger than machine
round off error.

5. Integral over £ and y’

Let the integration intervals be Y <y’ <7 and £ <& <E. We do the ¥’ integral first by calling
the subroutine described in the previous section, and then the & integral. For fixed €, the subroutine
described in the previous section will find A,,,;, the minimum of A, within the interval Y’ <y’ <Y’ and
integrate over only a few e-foldings of exp(—A,/1) in its vicinity. We then need to find the minimum of
Aum1 over all € in the interval £ < & <, and integrate over only a few e-foldings of exp(—A,./7) in its
vicinity.

The largest contribution to the integral comes from those values of & for which A, is 1. For a
given E, the minimum of A, in the interval is 1 only if

Y <y+1-8)) <Y
or, equivalently,
E.<t<E,, (11)

where

-
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E,=1+1/v17Y and &, = 1+1-1/Y.
Thus, our first integration subregion is max(§,E,) < & < min(E,E,) and if this interval is not empty, we
set ;\.,“,‘2 =1.
IfE, <E, then, forall £ > E,,
Y Syl <7,
so far these values of &, A, = A(Y,Y,E). The minimum value of A,,, is at
£ = 1--7V) = Em, (12)
since Y’ < y. Therefore, the minimum value of A, in the intersection of the integration interval and
tE2E,, occurs at max(E, k) and we call this A,,o and then determine the e-folding intervals in & by
solving
7\.._,,,1-0-’1‘! = 7»(7"?,5)
for &, where n=1,2,3.... This determines our second set of integration subregions.
Ifg <&, <1, then forallE <&,
Y+¥1-E)] < Y,
so for these values of &, A,,; = A,(¥,Y,E). The minimum value of A,,, is at
£ =1-YV(Y) = & (13)

since §,, < 1 implies Y’ <. Therefore, the minimum value of A,,,; in the intersection of the integration
interval and € < &, occurs at min(§,,E) and we call this A, and then determine the e-folding intervals
in & by solving

;"-0-»1.2"'”‘t = M('Y.I':ﬁ)

for §, where n=1,2,3.... This determines our third set of integration subregions.
If 1 <E,, then, forall E<E,,

Yi+(1-8)] <Y,
so for these values of &, A, = A, (1Y ,E). The minimum value of A, is at
€= 1-h-YVOY) = 2§, (14)

since 1 < &, implies y<Y'. Therefore, the minimum value of A, in the integration interval occurs at
max(§,min(€,2-€,)] and we call this A, and then determine the e-folding intervals in £ by solving

Am2tnT = A(1,Y8)

for §, where n=1,2,3.... This determines our fourth set of integration subregions.

As was shown in Sec. 2, numerical integration in the vicinity of y=y’, E&=1 will be correct if we
just use 1 = V1-E as our integration variable which eliminates the 1/¢ singularity. This is important for
the case where [Y'~y and |y~ are both small and € = 1. Within each integration subregion we use a
second-order Simpson’s rule and keep doubling the number of integration points till the desired accu-
racy is reached. The number of e-folding intervals is determined by either reaching the boundary
(€ or E) or else when the contribution of the last e-folding subregion is less than the acceptable error.
The integrand values are determined by calling the subroutine described in the previous section.

6. Integrate over &, ¥’ and average over Yy

Let the integration intervals be Y<yY<7, Y <y <Y and § < <E. We integrate over Y’ and &
first by calling the subroutine described in the previous section, and then integrate over 7. For fixed ¥,
the subroutine described in the previous section will find A,,,, the minimum of A, within the rectangle
Y <y <y and <& <E, and integrate over only a few e-foldings of exp(-A,/1) in its vicinity. We
then need to find the minimum of A, over all v in the interval y <y < ¥, and integrate over only a few
e-foldings of exp(—A,,.o/T) in its vicinity.
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The largest contribution to the integral comes from those values of ¥y for which A, is 1. For a
given v, the minimum of A, in the rectangle is 1 only if

Y <yl+1-8)] < ¥, with E<E<E
or, equivalently, since
Y (1+Y(1-5)]
is monotonically increasing for § < & < E, the minimum of A, in the rectangle is 1 only if
Y < y[1+¢(1-5)] and y[1+(1-D]< Y.
This result is true if and only if
In SYS Vms (1s)
where
Y = Y/max[+0,1-Y'(1-E)] and ¥, = y/max[+0,1-y’(1-§)].
Thus, our first integration subregion is max(y,y,) < ¥ < min(¥,Y,)-
If ¥,, < v, then, for all Y2 ¥,, Y" <y and 1-y'(1-£) 2 O. Therefore,
Y S y1+¥1-E)] < y1+y1-E)] with E <& <E,
so the minimum of A, is always at y’. Furthermore,
Y2Y/1-'(1-8)] implies & 2 1-(+-Y'V(YY),

which is where the minimum of A, over & occurs. Therefore, for these values of ¥, Am = Ad(%YHE)
and as was shown in Sec. 2, the minimum value of A, is at

Y=Yy (1-E)] = Yn . (16)

Therefore, the minimum value of A, in the intersection of the integration interval and Y 2 Y, occurs
at max(Y,,y) and we call this A,,; and then determine the e-folding intervals in ¥ by solving

AimstnT = LLYSE),
for vy, where n=1,2,3.... This determines our second set of integration subregions.
If ¥ < Y, then, for all Y< 1y, and forany £ < 1,
Y 2 y[1+y(1-5)]
SO Apm1 = A(1,YE). Now the minimum of A,,,; over & occurs at
-1
and is 1 if Y27 and 1+Y'-yif Y 2 v. Therefore,

Y1+’ (1-E)] < ¥ £ Y'/max(0,1-Y'(1-E))
for 1 Y/M+Y (-5 <y<Y/M+Y'(1-E)] [, we have
Y <Y1+’ (1-8)

E<1-h=YVY) < 1, and 1< Agn(¥) = AGYE) < 14Y=Y/[1+Y (1-5)]
E< 1Y V) <& and 14Y'-Y7[+Y (1-5)] € Ao(¥) = 14Y—y < 1+Y-Y/014Y' (-1 ¢ . (AT)
1I--YV() <& and 1+Y-Y7[1+Y(1-8)] € Aema(¥) = A(1Y5)

Here, A,,(Y) decreases monotonically as y increases in each of these three intervals, so the minimum
value of A,.o(Y) is at Y=7,. Therefore, the minimum value of A,,»(y) in the intersection of the
integration interval and y <y, occurs at min(y,Y) and we call this A,,; and then determine the e-
folding intervals in ¥ by solving

AimatnT = Ao (V)
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for v, where n=1,2,3.... This determines our third set of integration subregions.

Within each integration subregion, we use a second-order Simpson’s rule and keep doubling the
number of integration points till the desired accuracy is reached. The number of e-folding intervals is
determined by either reaching the boundary (y or y) ar else when the last e-folding subregion’s contri-
bution is less than the acceptable error. The integrand values are determined by calling the subroutine
described in the previous section.

7. Conclusion

These subroutines were checked by comparing them with the nonrelativistic Thomson cross sec-
tions, the results of Matteson® and the results of Wienke.> We obtained good agreement in all cases.
These routines are available from the author.
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